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Benford’s Law (BL) can be defined as a collection of em-
pirical evidence related to the frequency distribution of the 
leading digits in numerical data sets. The best-known ver-
sion of the law states that in those data sets representing 
a collection of “natural” data, the probability of seeing a 
particular digit in the first position is inversely related to its 
rank. For example, 1 appears as the first digit in about 30% 
of all cases, while 9 appears in less than 5% of cases. Other 
versions of BL define the frequency distribution of the second 
digits, third digits, and their combinations. The history of 
the discovery of this law makes it even more mysterious. 
Initially explored by Newcomb (Newcomb & Nuw, 1881), 
the law was forgotten for more than 50 years. Benford 
(1938) rediscovered it, and used it to explain the behavior 
of numerous data sets from different domains of science. BL 
can be treated as one of the most exciting representations 
of the power laws, which are used in natural sciences and 
empirical research in economics (Gabaix, 2016). 

Introduction

In real-life numbers are assumed to be defined 
by random events, thus following BL. However, our 
perception of randomness deviates from true random-
ness. Falk and Konold (1997) note that the human 
mind tends to produce rather dense distributions, as-
suming that the probability of any digit taking first po-
sition is equal for all digits. In other words, we expect 
digits to be uniformly distributed, and the chances of 
seeing any digit in the first position are equal (with

a chance of ≈ ). If the numbers are

generated by the human mind, the distribution of the 
first digits should differ from Benford’s distribution.
Therefore, BL can be used as a test for whether a da-
taset contains real-life numbers (Gauvrit et al., 2017). 
A particular area of BL applicationis in the fight against 
tax fraud (Drake & Nigrini, 2000).

The popularity of BL, especially in the accounting 
textbooks, rises as big data analysis enters everyday 

accounting practice (Janvrin & Watson, 2017). How-
ever, the application of BL should not be limited solely 
to these areas; it seems that not only accounting and 
finance, but other fields of economics can be enriched 
by introducing BL to the academic curriculum. The 
present paper utilizes a simple tax fraud classroom 
experiment based on BL in order to achieve the follow-
ing teaching goals: i) demonstrating to undergraduate 
economics students the complexity of probability 
theory as well as biases related to “folk” probability 
estimation in the human mind; ii) showing the op-
portunities for big data analysis; iii) discussing the 
reliability of publicly available data and ways to check 
it; iv) familiarizing the students with simple program-
ming tools for simple applied economic problems. 

The first part of the paper discusses the history of 
BL, its functional form, and its application in anti-tax 
fraud procedures. The second part is devoted to the 
potential of BL to enrich the academic curriculum of 
different economics subjects. Finally, the third part 
presents the detailed guide for the lecture devoted 
to BL, including classroom experiment methodologies 
and relevant empirical and theoretical support. 

History, formulation, and testing of BL
The history of BL began in 19th century when an 

astronomer, Newcomb (1881), noticed that the first 
pages of the logarithm books in the library were the 
most thumbed, while the last pages left relatively un-
damaged. He explained this by the fact the frequency 
of distribution of the first digits is not uniform and 
is instead inversely dependent on the digit’s rank. 
Initially, this distribution pattern was defined as

 = +  (1)

where 
D is the digit’s rank;
PD is the probability of seeing digit D as the first digit 
in the randomly chosen number.
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Equation (1) implies that probability PD of the first 
digit D occurring, which takes the value from the range 
D ∈ [1. 9], can be defined as a common logarithm 

of + . If the distribution of the first digit was

uniform, the probability of any specific digit occur-
ring as the first digit would be identical for each digit 
(approximately 11.1%). However, according to the 
Newcomb’s formula for probability distribution (1), for 
the digits1, 2, and 9, the probability of appearing as 
the first digit is close to 30%, 17%, and 4%, respectively. 
The pattern is general and irrespective of the unit of 
measurement or data source, and thus is referred to 
as a “universal property of real world measurements” 
(Sambridge & Tkalčic, 2010), or, more poetically, the 
„harmonic” nature of the world (Furlan, 1948). The law 
was rediscovered by Benford in 1938, who analyzed 
20,229 numbers related to city populations, financial 
data, etc. from 20 different statistical sources, and 
proved that the distribution of the first digits followed 
the pattern he defined.

BL can be extended to other systems besides the 
decimal. The more general form of BL is presented 
in equation (2). 

 = +  (2)

where
D is the digit’s rank;
B  is the number of digits in the system (for instance, 

for a binary system,  B =2).

It is possible to define the distribution pattern not 
just for a single digit D, but also for a combination 
of n digits. Table 1 presents the precise expected 
frequency of the first four digits in accordance with 
Benford’s distribution. Figure 1 shows the probability 

distribution function for the first digit, which is the 
most commonly applied. 

The explicit and unified theoretical justification of 
BL still has to be developed (Sambridge et al., 2011; 
Berger & Hill, 2011). Nevertheless, the attempts to 
design it have resulted in the theorem of random 
samples from random distributions. This theorem 
suggests that even if some individual distributions of 
real data do not follow BL, random samples taken from 
such distributions still do (Hill, 1995). As discussed in 
the next section, numerous studies have explored the 
opportunity to exploit BL for the sake of uncovering 
tax fraud. From this perspective, the researchers need 
statistical tools that can provide reliable results con-
cerning the deviations of the hypothetically “natural” 
data samples from the distributions predicted by BL.

One of the most common methods of testing the 
consistency of theoretical and empirical distributions 
is the goodness-of-fit test. The null hypothesis (H0) 
states that a sample of the data does not differ from 
the sample predicted by BL. The test statistics have 
the typical Chi-squared distribution (Cho & Gaines, 
2007, p. 220):

 
( )

χ

=

−

=

where
Oi is the observable frequency of digit i;
Ei  is the expected frequency of digit i (i.e., frequency 

predicted by BL);
n is the number of observations. 

This follows from Chi-squared distributions with k 
degrees of freedom. One of the major disadvantages 
of this test is that it is extremely sensitive to sample 
size, which makes it too rigid for testing purposes 
(Ley, 1996; Giles, 2007). 

Table 1. Probabilities of the numbers from the natural dataset occurring in the first, second, third, and fourth digit 
position

Digit Probability of occurring 
in the first position

Probability of occurring 
in the second position

Probability of occurring 
in the third position

Probability of occurringin 
the fourth position

0 N/A* 0.11968 0.10178 0.10018

1 0.30103 0.11389 0.10138 0.10014

2 0.17609 0.10882 0.10097 0.10010

3 0.12494 0.10433 0.10057 0.10006

4 0.09691 0.10031 0.10018 0.10002

5 0.07918 0.09668 0.09979 0.09998

6 0.06695 0.09337 0.09940 0.09994

7 0.05799 0.09035 0.09902 0.09990

8 0.05115 0.08757 0.09864 0.09986

9 0.04576 0.08500 0.09827 0.09982

Source: Nigrini, 1999, p. 2.
* The probability cannot be defined.
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One possible alternative might be the Kolmogorov-
-Smirnov test for comparing two empirical distribu-
tions by defining the largest absolute difference 
between the cumulative distribution functions as the 
measure of the discrepancy:

 ( ) ( ) ( )
( )

χ
⋅

= − ⋅

+

 (4)

where
k is the total number of observations;
Fn1(x) and Fn2(x) are empirical cumulative distributions 
of the first and the second sample, respectively;
n1 and n2 are the sizes of the first and the second 
sample, respectively.

According to Stephens (1970), the Kolmogorov-
-Smirnov test is not biased by sample size and gives 
more reliable conclusions. However, as noted by 
Noether (1963), tests based on the null hypothesis 
of a continuous distribution may not be appropriate 
for testing discrete distributions. As a result, the test 
values may be quite conservative in rejecting the null 
hypothesis, giving false-negative results.

Application of BL in teaching economics

Accounting and finance – tax fraud
The first proposal for applying BL to check the va-

lidity of natural number samples was made by Varian 
(1972). However, BL was still not applied by account-
ants and tax officers up to the late 1980s, when Cars-
law (1988) observed that the distribution of the digits 
in data reflecting income streams from New Zealand 
was not in line with BL. Nigrini’s works (1996; 1999) 
on the digital analysis were actually helpful in uncover-

ing cases of tax evasion in the USA. At the same time, 
some researchers (see Ettredge &  Srivastava, 1999) 
stated that the fact that the distribution of the first 
digits in the presumably real numbers differs from BL 
does not necessarily imply fraud: the deviation might 
arise from flaws and operating inefficiencies in the 
operating data systems. 

Durtschi et al. (2004) defined the cases when BL 
should or should not be applied in order to recognize 
fraud. They claim that BL can be used as a reliable 
detector of fraud i) when the numbers are the com-
binations (products) of the other numbers (e.g. sales); 
ii) when the dataset is large enough; iii) when the 
mean is higher than the median, and the skewness is 
positive. In contrast, BL will not give reliable conclu-
sions about fraud when:i) the numbers are assigned 
(e.g. invoice numbers); ii) the numbers are the product 
of human design (e.g. prices, which tend to end with 
99); iii) the numbers come from accounts featuring 
a large proportion of firm-specific numbers, and iv) 
when there are minimum and maximum numbers 
built in. 

The last couple of decades have been marked by 
a substantial increase in the volume of financial and 
accounting literature showing how to use BL to track 
fraud and its applicability in forensic accounting (Ni-
grini, 2012). The know-how presented in the majority of 
papers focused on the operational side of the problem 
(Simkin, 2010). The focus on the applied aspects of 
BL in the accounting and financial literature caused 
the development and extension of these methods (Ni-
grini, 2012). New and promising areas of application 
in finance and accounting are anti-money-laundering 
(Yang & Wei, 2010) and financial statement analysis 
(Henselmann et al., 2012). Drake’s and Nigrini’s (2000) 
methodology can serve as an excellent example of 
how to introduce BL and digital analysis of accounting 

Figure 1. Distribution of the leading digit: a visualization

Source: own work, based on Nigrini, 1999, p. 2.
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data to students efficiently. This paper can be treated 
as a very comprehensive instruction for students and 
practitioners of accounting and auditing.

Microeconomics – training the probability perception
The critical issue related to the modern way of 

teaching microeconomics is the excessive use of the 
“chalk-and-talk” approach as well as insufficient at-
tention towards the students’ skills of solving applied 
problems (Watt, 2011). A BL experiment can be treated 
as one of a series of activating tools used during ap-
plied microeconomics courses. Its main aim is to show 
how the simplified perception of the probability can 
result in incorrect perceptions of real-life economic 
phenomena. Even setting up a simple standard model 
requires, among other things, a realistic understand-
ing of the probabilities, which is usually outside the 
agenda of an economics education (Gigerenzer, 2015). 
The majority of economics textbooks present problems 
where the probabilities are either explicitly defined 
or can be derived using simple rules of probability 
counting (see, for instance, McConnel et al. 2014, 
Varian 2014, Frank & Cartwright, 2013). Students do 
not gain any skills in evaluating probabilities on their 
own; instead, they obtain the information as found in 
textbook problems.

BL can be treated as one of the Power Laws (PLs), 
which are a good source of the empirical evidence 
necessary to develop the skills of realistic probability 
perception since they facilitate the process of gaining 
background knowledge about the numerous empiri-
cally observed patterns. Firstly, PLs are present in vari-
ous fields of science and life. One of the best known 
and commonly mentioned beyond the field of formal 
science is the Pareto principle, while an additional 
example is that the size distribution of cities follows 
Zipf ’s Law (1936), analogously to the size of the 
companies and the stock exchange cumulative returns 
(Gabaix, 2016). Secondly, the unique thing about PLs 
is that they break the common perception that the 
variables are distributed around the mean (i.e., that 
data generally fit the uniformor normal distribution 
patterns). Our tendency to average is so strong that 
even the popular Pareto distribution of income is flat-
tered in the human mind, as Norton and Ariely (2011) 
showed in their experimental study. 

Big data – the new challenge
The development of the field of data science has pro-

vided additional opportunities for applying statistical 
analyses, such as testing BL in many areas of manage-
ment, accounting, business, and economics. It is part 
of the “big data” revolution, in which various data are 
treated as a new production factor. Big data is referred 
as “high-volume, high-velocity and/or high-variety in-
formation assets […]” (Gartner, 2015, retrieved from 
Janvrin & Watson, 2017, p. 2). The field of data science 
as it is understood nowadays is relatively young, but it 
has already become integral to a wide range of related 
fields. Teachers need to find a new way of incorporating 
this change to the existing educational process.

Janvrin and Watson (2017) have analyzed the role 
of big data in maintaining accounting standards. The 
big data approach is even more relevant to revealing 
cases of tax fraud by applying BL because using auto-
mated procedures is less costly than developing the 
human mind. Further developments in data science 
and the standardization of reporting methods for the 
tax and financial authorities may also facilitate the 
development of automated audits. For accounting 
students, the new tools provide the possibility to 
analyze both structured and unstructured data using  
Business Intelligence (BI) technologies and avoiding 
time-consuming and laborious calculations in Excel. BL 
is set to become part of the curriculum for accounting 
students (Drake & Nigrini, 2000). 

The big data revolution will also change how we 
teach economics. The new IT tools make statistical 
analysis simpler and easier. Admittedly, economics 
students have no access to typical BL tools due to the 
relatively high costs, but the combination of open-
source R, R-studio and Markdown software makes it 
possible to conduct studies with no explicit costs. 
The availability of ready-to-use procedures allows 
them to carry out such data exploration with little 
in the way of programming skills and can be a good 
motivator to learn how to code and to use statistics. 
The possibility of testing BL seems to be wide open 
for students and teachers. The increasing number 
of emerging areas and applications make it more 
attractive (Berger & Hill, 2015). There are two main 
areas of using BL in the classroom: i) testing the qual-
ity of economic data, and investigations related to 
scientific fraud and fake data; ii) testing the behavior 
of forecasts in econometric modeling. 

Similarly to tax and financial data, economic data 
may contain defects resulting from unreliable reporting 
or intentional manipulation. The exploitation of the 
data should be preceded by procedures for testing data 
quality. The literature showed that the credibility of 
the data used in economic and social science research 
is moderate or even low (Ioannidis & Doucouliagos, 
2013). BL is one of the potential tools available to 
investigate the problem of data falsification (Michalski 
& Stoltz, 2013). The application of these new IT tools 
makes the procedure so simple that even students can 
become investigators and discover scientific fraud and 
non-naturality in the data. This can be their first step 
towards critical thinking about scientific evidence. 
The experience of investigations of this type can also 
reduce the moral hazards of students by demonstrating 
the existence of efficient tools for detecting fraudulent 
behavior. 

An additional and relatively new area of using BL is 
an application for testing the robustness of the fore-
casts in econometric modeling. If the input data fits 
BL, then the output data should also meet the same 
criterion. The new evidence shows that some outputs 
from numerical algorithms, transformations of the 
random variables and the stochastic processes, as well 
as multidimensional systems, fulfill BL (Berger & Hill, 
2015). A test based on BL may be an exciting proposi-
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tion to evaluate such models as Dynamic Stochastic 
General Equilibrium Models (hereafter DSGE), which 
have no statistical goodness-of-fit measures yet. 

Experiment, simulation, and research – 
BL in the classroom – a case study

The educational tools presented in this section were 
used to introduce BL during an Applied Microeconom-
ics course, but they can also be used for accounting/
finance or data science classes. The first stage of the 
study is to conduct an experiment; the students have no 
prior knowledge when providing the answers, and this 
is expected to have a positive effect on their motivation 
to learn the subject through the creation of a form of 
“information deprivation.” The second stage is devoted 
to the analysis of BL, including the theoretical formula-
tion of legal, real-life examples, and an application of 
BL in tax fraud detection. The demonstration of the 
Monte-Carlo simulation is presented to prove the evi-
dence collected by other authors. Finally, the students’ 
answers are presented. The third stage of the study 
incorporates an analysis of the IT tools necessary for 
conducting the experiment and the data analysis. 

The tax fraud problem was the central storytelling 
(or narrative) framework, used to make the problem 
interesting for the students. To be more precise, they 
attempted to fool a hypothetical tax officer through 
providing fictional numbers that appeared to be 
random. Geyer (2010) used a similar methodology, 
making BA students play the role of tax evaders. 
The crucial difference between Geyer (2010) and the 
present paper is that the latter proves explicitly to 
the students the impossibility of committing tax fraud 
in the epoch of big data techniques. In other words, 
the undergraduate economics students gain valuable 
experience, which is expected to prevent them from 
cheating in the future. 

The main goal of using the tools was behind the 
story. It was attempted to show to the students that: 
i) the straightforward perception of probability can 
result in inefficiency in the analysis of real-life prob-
lems; ii) the possibility of fraud in the big data era is 
much smaller, and this is explained not only by the 
tax and financial issues but also by developments in 
scientific research and public statistics.

Conducting the experiment 
During the experiment, the students were asked 

to add 60 numbers to the fictitious invoices. Their 
goal was to generate data that would appear to be 
generated by random factors, not by the human mind. 
The students received a small number of additional 
grading points for participation in the experiment, 
and they also gained extra points for avoiding being 
caught. The incentive may seem to be non-ethical, 
as the students received extra points for non-ethical 
behavior; however, the motivation incentive scheme 
is correct. The chance that they would receive points 
for efficient cheating is minimal, as the anti-fraud pro-
cedures based on BL work fine. Even after the lecture, 
a student who knew and understood BL had problems 
with fictional cheating on the tax authorities because 
they could not control the frequencies of all the digits. 
In addition, the students need to experience that their 
effort to cheat is useless. This experience (i.e. demon-
strating how easily fraud can be detected) is a crucial 
factor, which can influence their further behavior and 
motivate them to avoid fraud (Joyner, 2011), especially 
in the light of the public presentation of the results of 
anti-fraud procedures. In order to avoid the possibility 
of boycotting the experiments caused by the transpar-
ency of the decision, the students were asked to enter 
an anonymous nickname during the experiment (see 
the first screen of the experiment, Fig. 2). They could 
recognize their results while remaining anonymous on 

Figure 2. Initial screen in the BL experiment

Source: own experiment, programmed in labsee.com.
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the animation presenting the results of the antifraud 
algorithm (see Fig. 2).

The experiment is quite short and can be conducted 
as the first part of the lecture or as prior homework. 
The students have to fill in the gaps with numbers 
on all four screens representing the hypothetical 
monthly accounts (see Fig. 3). To make the task more 
complicated, the students must enter the numbers 
using a pre-defined number of digits. 

The experiment was conducted using the labsee.
com platform.1 The platform offers a variety of tools 
for conducting online synchronous and asynchronous 
experiments and surveys; using this platform requires 
basic skills in Java programming. The advantage of 
the using labsee.com platform is the instructor’s 
ability to control the experiments in real-time during 
the lecture. However, if the experiment is performed 
asynchronously, the instructors are free to use any 
other online platform. 

Introducing BL by the simulation and analysis 
of real data 

After all the participants submit their responses, 
the instructor should proceed to introduce and explain 
BL. The proposed method of doing this is split into 
several stages: i) explaining BL using the Monte Carlo 
simulation and theory presented in the first section 
of the present paper; ii) proving that real-life data 
follow BL; and iii) showing and discussing the results 
of the experiment.

The Monte Carlo simulation serves as a simple 
thought experiment, which shows the misleading per-

ception of a probability based on the prior student’s 
experience about the distribution of values around 
the mean. In the first part of the experiment, they 
should imagine one bag containing nine ping-pong 
balls, labeled from 1 to 9, and the other two bags 
containing ten ping-pong balls labeled from 0 to 9. If 
the participant is asked to close his eyes and withdraw 
a random ball from the first bag, what would be the 
probability of pulling out a ball labeled “7”? According 
to theory and common sense, the probability should 
be 1/9. The same would be applicable to any other 
number. For the second and third bag, the probability 
of pulling out a ball with a random number should be 
1/10. The MC simulation ball_drawings.html2 presents 
the visualization of the sequential drawings, which 
mimics the process of the random choice of 60 sam-
ples from three digit numbers (see Fig. 4). 

The main observation that should be stressed 
based on the simulation is that for a small number 
of repetitions, it is difficult to find any patterns in 
the generated data. However, as the number of 
draws grows, the probability is consistent with the 
expected uniform distribution (the last screen shows 
the results of 10 000 draws). After this simulation, it 
is the right time to introduce BL using the suspense 
technique. The teacher should ask the students 
whether they used the kind of reasoning presented in 
the Monte Carlo simulation. The majority of students 
will probably confirm this. Then the teacher should 
follow the narrative structure and create the tension 
by announcing that if this was their strategy, then 
they have been caught on cheating on the invoice 

Figure 3. Design of the BL Experiment

Source: own experiment, programmed in labsee.com.

1 Labsee.com is a platform designed for conducting large-scale online economic experiments.
2 One can find the R-project to generate the presented visualizations in the online annex; alternatively, there are 
ready-to-use visualizations (see Fig. 4).
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experiment because the actual distribution of digits 
is significantly different.

The instructor should present visualizations of 
the first digit distribution in the empirical datasets 
in order to show that natural data flows suit BL. The 
visualization empirical_data.html includes four data 
samples. The first three are real data describing: 
i) the lengths of the 98 longest rivers in the world; 
ii) the populations of the majority of countries; and 
iii) the GDP of the majority of countries, respectively. 
The fourth data set is the Input-Output (I-O) matrix 

used in the estimation of the DGSE model (Kiuila, 
2018). The visualization (see Fig. 5) shows that even 
for a relatively small number of observations, it is 
easy to see a common pattern in the distribution of 
first digits (Fig. 5a). The first digits are not uniformly 
distributed. For any digit, the frequency of occurrence 
in the first position is inversely related to its rank: for 
instance, the digit 1 is much more frequent than the 
other digits. For the full sets of observations (Fig. 5b), 
the distribution of all the data is nearly identical and 
follows BL.

Figure 4. Simulation of drawing random numbers

Source: own analysis in R in animation package (Xie, 2013).

Figure 5. Frequencies of the first numbers of the analyzed datasets (rivers, populations, GDP, I-O matrix): a) sample 1 to N; 
b) full dataset

Source: own analysis in R in animation package (Xie, 2013). 
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Discussing the results and post-experimental 
activities

The final stage is discussing the results of the 
classroom experiment. After introducing BL in 
a functional form with relevant real-life examples, the 
teacher should present its applications in detecting 
tax fraud (Nigrini, 2012; Simkin, 2010) and show the 
summary visualization of the results of the antifraud 
procedures applied to the experimental data. The 
analysis was performed using the R-CRAN package 
BenfordTests (Joenssen, 2015). The first stage of the 
procedure is a “red flag indicator” based on the digits’ 
p-value. If there is a statistically significant difference 
between the frequency assigned by the participant 
and the frequency predicted by BL (i.e., if the p-value 
is higher than 0.1), the flag is set. The second stage 
is the Kolmogorov-Smirnov goodness-of-fit test. With 
the use of the automatizing R codes, the visualization 
is ready immediately after finishing the experiment 
(see supplementary online materials). 

An essential part of the visualization is to present 
the participants’ nicknames only on the screen. The 
results are presented publicly, and the students can 
easily see and recognize their responses while remain-
ing completely anonymous. In psychology, the experi-
ence can be personally transformative if it changes 
one’s point of view (Paul, 2013). Being caught cheating 
in this way is a valid form of experience, even if it is 

only a game. If future decisions on whether to cheat 
is based on a perception of the probability of not 
being caught, then the obtained results leave no illu-
sions. Even simple statistical procedures can indicate 
fraud exceptionally effectively. The experiment was 
conducted twice (with groups of 10 and 60 people), 
and all the students were flagged.

The simplicity of the BL test (see Fig. 6) can be 
good motivation for students to conduct their own 
investigation. The students can apply the ready-to-use 
R codes, enabling them to apply the BL test with no 
prior experience in coding. The rest of the attached 
codes are more complicated, mainly because of the 
publication purposes, but even students and teachers 
with little or no coding experience can use and modify 
them; the codes are free and available for everyone. 

There are numerous sets of economic data that 
have not been tested for the possibility of mistakes, 
errors, tax fraud or even the scientific fraud. In in-
ternational trade, importers usually avoid reporting 
large volumes, as this may require a higher tariff rate. 
From this perspective, international trade statistics 
can be an exciting test area for applying BL in order 
to identify fraud. 

The empirical distributions of the first digits are not 
consistent with BL distributions for some years (see 
Fig. 7 and supplementary online materials). For such 
a large sample, the presented deviation from BL can 

be a good motivation for further 
detailed investigation.

For students of more advanced 
quantitative methods, it is worth 
discussing two papers devoted 
to i) one of the most straight for-
ward explanations of BL (Fewster, 
2009); and ii) why the presented 
explanations of BL are still not 
satisfactory (Berger & Hill, 2011). 
The latter paper criticizes “folk” 
explanations of BL (such as the 
“birthday paradox”), pointing out 
that although they seem to be 
intuitive, they do not pass the test 
of solid mathematical analysis. In 
other words, BL still remains a kind 
of mystery. 

Playing with BL accidentally 
creates mystery and the atmos-
phere of crime puzzles. For a group 
of MA students, this issue was so 
interesting that they spontane-
ously came up with the idea of 
a contest. During the contest, 
a team of “creative accountants” 
and another of the “tax authority” 
competed. The goal of the former 
team was to generate such data-
sets that would not be detectable 
by the latter group. After some 
modifications, the contest seems 
to have become an auspicious tool 

Figure 6. An example visualization of the results of a classroom experiment

Source: own work, based on R and Benford Tests (Joenssen, 2015), available in online 
materials.
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to inspire students to make additional effort during 
quantitative methods courses.

The mystery of BL touched the authors too. How 
can one explain the result of a simple MC experiment? 
The experiment can be conducted in N-steps.
Step 1:  From the sample of natural numbers ranked 

from 1 to 999, a number p1 is randomly picked 
using a random number generator with a uni-
form distribution. 

Step 2:  From the sample of natural numbers ranked 
from 1 to p1, a number p2 is drawn using the 
same techniquesas in the first step. 

Step 3:  From the sample of natural numbers ranked 
from 1 to p2, a number p3 is drawn using the 
same technique as in step one.

 […..]

Step N:  From the sample of natural numbers ranked 
from 1 to pn, a number pn+1 is drawn using the 
same technique as in step one.

The entire procedure should be replicated 10,000 
times, which should result in N vectors containing 
all the randomly picked numbers p for each step. For 
each such vector, the first-digit law is tested. The 
results obtained from step 1 are similar to the ball 
drawing simulation with a uniform distribution. More 
steps causes number 1 to be more frequent (see Fig. 
8), and the distribution approaches the BL pattern. 
This creates a puzzle: why are only 3 steps required 
to generate the numbers which follow BL? For more 
than 3 steps, the simulated distribution moves away 
from the theoretical distribution: digit 1 becomes 
much more frequent.

Figure 7. An example of the empirical distribution of the first digit in the volumes of exports between EU Member States for 
the year 2015

Source: own work based on IMF Direction of Trade statistics and R package Benford Tests (Joenssen, 2015), available in online 
materials. 

Source: own application, based on R and Benford Tests (Joenssen, 2015), available in online materials.

Figure 8. Visualization of the first six steps in the Monte-Carlo simulation 
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The experiment and the prepared MC simulations 
can be used in a wide range of academic courses, 
such as accounting, applied microeconomics, and 
quantitative methods. The actual scheme chosen 
to present the material depends on the subject of 
study. The presented scheme was designed around 
an Applied Microeconomic course for data science 
students, but the materials can be used like Lego 
bricks and easily adjusted to one’s needs.

Conclusions

This paper presents a simple in-class experiment 
and Monte Carlo simulations. Its goals are twofold. 
The first is to familiarize the students with the exist-
ence and the properties of BL, which is one of the 
“gems of statistical folklore” (Berger & Hill, 2011). 
The second is to achieve vital teaching goals. One of 
the leading teaching goals in this experiment was to 
train the students’ skills in the realistic perception of 
probabilities, which does not currently form part of 
microeconomics courses. The experiment, therefore, 
attempts to demonstrate that the simplified percep-
tion of probabilities may result in a failure during 
real-life data analyses. The additional goal was to 
train the students’ skills in the critical assessment of 
data, as the frequent use of unreliable or fake data 
is a continuing problem in the social sciences. The 
demonstration of how easily fraud may be detected 
is expected to diminish the motivation of students to 
cheat in their courses, or, even in their professional 
career. Finally, the presented classroom experiment 
can be used to familiarize the students with the basic 
IT tools, necessary for the simple data analysis.

The authors will continue to create new materi-
als concerning BL and generally probability and risk 
perception. We are happy to share new experiments 
and simulations at our site.
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Abstract
This paper presents a classroom experiment, the related simulations, and a form of research which familiarizes students with 

BL. This law is widely used in tax fraud detection procedures. This paper shows that: i) BL can be useful in extending the simple 
perception of probability, which is presented in the lectures as concerning risk, ii) can be an excellent example of using data 
processing for classroom tasks, and iii) the experience of fraud detecting techniques may help students change their attitudes to 
cheating. The experiment and the prepared R codes can be used in numerous courses, such as accounting, applied microeconom-
ics, and quantitative methods. 

Keywords: Benford’s Law, probability perception, tax fraud, scientific fraud, R-CRAN
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