Appendix 1

Figure 8

Python Script – Feature Scaling/Normalisation

```
In [5]: from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range=(0,1))
training_set_scaled = sc.fit_transform(training_set)
In [6]: print(training_set_scaled)
[[0.08581368]
[0.09701243]
[0.09701243]
[0.093366]
...
[0.95725128]
[0.93796041]
[0.93688146]]
```

Source: authors' own work.

Figure 9

Python Script – Creating a Data Structure with 60 Time Steps and One Outcome

```
In [7]: X_train = []
y_train = []
for i in range(60, 1257):
    X_train.append(training_set_scaled[i-60:i, 0])
    y_train.append(training_set_scaled[i+1, 0])
    X_train, y_train = np.array(X_train), np.array(y_train)
In [8]: print(X_train)
[0.08581368 0.09701243 0.09433366 ... 0.07846566 0.08034452 0.08497656]
[0.09701243 0.09433366 0.09156187 ... 0.08034452 0.08497656 0.08627874]
[0.09433366 0.09156187 0.07984225 ... 0.08497656 0.08627874 0.08471612]
...
[0.92493861 0.92106928 0.92438053 ... 0.96123223 0.95475854 0.95204256]
[0.92106928 0.92438053 0.93048218 ... 0.95475854 0.95204256 0.95163331]
[0.92438853 0.93048218 0.9299055 ... 0.95204256 0.95163331 0.95725128]]
In [9]: pd.DataFrame(y_train)
```

Out [9] : 0 0.084716 1 0.074541 2 0.078838 3 0.072383 4 0.066634 1192 0.952043 1192 0.957251 1195 0.937960 1196 0.938881 1197 rows × 1 columns

Source: authors' own work.

Figure 10

Python Script – Data Transformation Step

```
In [10]: X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
In [11]: print(X_train)
        [[(0.08581368]
        [0.09701243]
        [0.08497656]
        [0.08497656]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.09433366]
        [0.0943251
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
        [0.08497656]
```

Source: authors' own work.

Figure 11

...

Python Scripts – Part 2. Building an RNN

```
In [12]: from keras.models import Sequential
from keras.layers import Dense
from keras.layers
from ke
```

Source: authors' own work.

Figure 12

Python Script – Fitting an RNN to the Training Set

In [20]:	<pre>regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)</pre>
	Epoch 98/100
	38/38 [======] - 2s 42ms/step - loss: 0.0019
	Epoch 99/100
	38/38 [======] - 2s 42ms/step - loss: 0.0021
	Epoch 100/100
	38/38 [======] - 2s 42ms/step - loss: 0.0018
Out[20]:	<keras.callbacks.history 0x7fe8db6474c0="" at=""></keras.callbacks.history>

Source: authors' own work.

Figure 13

Pythor	n Scrij	pts	—	Pa	rt	3.	Forecasting	and	Data	Visualisation	
	Getting the										
In [21]:	<pre>dataset_test = pd.read_csv('Google_Stock_Price_Test.csv') real_stock_price = dataset_test.iloc[:, 1:2].values</pre>										
In [22]:	<pre>print(dataset_test)</pre>										
	Date 0 1/3/2017 1 1/4/2017 2 1/5/2017 3 1/6/2017 4 1/9/2017 7 1/12/2017 7 1/12/2017 7 1/12/2017 10 1/18/2017 12 1/20/2017 13 1/23/2017 14 1/24/2017 15 1/25/2017 16 1/26/2017 17 1/27/2017 18 1/30/2017 19 1/31/2017	788.36 796.08 795.26 806.40 807.86 807.86 807.14 807.14 807.48 807.48 807.48 805.12 806.91 805.12 806.91 807.25 822.30 822.30 822.30 822.30 822.31 834.71 834.71 834.76	791.34 794.48 807.90 809.13 808.15 807.39 811.22 807.14 806.21 807.14 806.21 809.48 806.91 820.87 822.90 835.77 838.00 841.95 815.84	803.51 801.37 799.17 806.69 800.37 800.99 801.80 801.69 803.74 817.82 825.06 827.01 820.44 799.80	794.02 806.15 806.65 804.79 807.91 806.36 807.88 804.61 804.61 805.02 819.31 823.87 835.67 832.15 823.31 802.32	1,494,500 2,973,900 2,965,800 3,246,600					
In [23]:]: print(real_stock_price) [[778.81]										
	[788.36] [785.08] [795.26] [806.4] [807.86] [807.48] [807.48] [807.48] [807.48] [805.12] [805.91] [806.91] [806.91] [807.25] [822.3] [823.62] [837.81] [834.71] [814.66] [796.86]]										

Source: authors' own work.

Figure 14

Python Script – Retrieving the Forecasted Stock Price from 2017

```
In [24]: dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis=0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 80):
    X_test.append(inputs[i-60:i, 0])
X_test = np.array(X_test)
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = sc.inverse_transform(predicted_stock_price)
1/1 [========] - 1s 649ms/step
```

In [25]: print(predicted_stock_price)

[1769.5995] [767.2304] [767.2304] [767.723] [770.09265] [774.6596] [779.22723] [782.45874] [782.46875] [782.66956] [782.4407] [782.4236] [782.4236] [782.4236] [782.4236] [783.6622] [787.353] [793.1025] [799.58813] [801.68805]]

Source: authors' own work.